Lateral and medial olivocochlear neurons have distinct electrophysiological properties in the rat brain slice.

نویسندگان

  • K Fujino
  • K Koyano
  • H Ohmori
چکیده

Electrical properties of cochlear efferent (olivocochlear) neurons were investigated with the use of the whole cell patch recording technique in slice preparations of the neonatal rat (postnatal days 5-11). Lateral and medial olivocochlear (LOC and MOC, respectively) neurons were retrogradely labeled with a fluorescent tracer injected into the cochlea. Stained neurons were identified under a fluorescence microscope, and they were subjected to whole cell recording. LOC and MOC neurons showed different electrophysiological properties. Both showed spike trains of tonic pattern in response to injection of depolarizing current pulses at the resting membrane potential (-60 to -70 mV). However, when the membrane was slightly hyperpolarized (-72 to -76 mV), LOC neurons showed spike trains with a long first interspike interval (ISI), whereas MOC neurons showed spike trains with a long latency to the first spike. Extracellular application of 4-aminopyridine (4-AP; 0.5-2 mM) shortened these ISIs and latencies. In voltage-clamp experiments, two transient outward currents with different (fast and slow) decay kinetics were observed in LOC neurons. The fast outward current (I(A-LOC)) was inactivated by the preceding depolarization, and decayed with a time constant (tau) of 86 ms (at 0 mV). The preceding potential, which reduced the current size to the half-maximum (V1/2), was -72 mV. The slow current (I(KD)) decayed with a tau of 853 ms (at 0 mV). I(A-LOC) was sensitive to 4-AP (2 mM), and was less sensitive to tetraethylammonium chloride (TEA; 20 mM). I(KD) was partially blocked by TEA (20 mM), but was insensitive to 4-AP (2 mM). The recovery from inactivation of I(A-LOC) was time dependent with a time constant (tau(rec)) of 32 ms at -90 mV. MOC neurons also showed a transient outward current that consisted of a single transient component (I(A-MOC)) with a steady outward current. I(A-MOC) was inactivated by the preceding depolarization. Decay tau of I(A-MOC) was 33 ms (at 0 mV), and V1/2 was -75 mV. I(A-MOC) was sensitive to 4-AP (0.5-1 mM). The time-dependent recovery from inactivation of I(A-MOC) was faster than that of I(A-LOC), and tau(rec) was 15 ms at -90 mV. The different kinetics of transient outward currents between LOC and MOC neurons seems to be responsible for the difference in firing properties of these two neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antibiotic Supplements Affect Electrophysiological Properties and Excitability of Rat Hippocampal Pyramidal Neurons in Primary Culture

Introduction: Antibiotic supplements are regularly used in neuronal culture media to control contamination however, they can interfere with the neuronal excitability and affect electrophysiological properties. Therefore, in this study, the effect of penicillin/streptomycin supplements on the spontaneous electrophysiological activity of hippocampal pyramidal neurons was examined. Methods: Electr...

متن کامل

AREGU Mar. 45/3

Hayward, Linda F., and Robert B. Felder. Electrophysiological properties of rat lateral parabrachial neurons in vitro. Am. J. Physiol. 276 (Regulatory Integrative Comp. Physiol. 45): R696–R706, 1999.—Anatomical studies have demonstrated that the lateral parabrachial nucleus (LPBN) is composed of at least seven separate subnuclei distinguished by cell morphology, spatial clustering, and afferent...

متن کامل

Electrophysiological properties of rat lateral parabrachial neurons in vitro.

Anatomical studies have demonstrated that the lateral parabrachial nucleus (LPBN) is composed of at least seven separate subnuclei distinguished by cell morphology, spatial clustering, and afferent and efferent connectivity. We hypothesized that neurons within the subnuclear clusters of the LPBN might have distinct electrophysiological properties that correlate with cellular morphology. An in v...

متن کامل

The Effects of Buthotus schach Scorpion Venom on Electrophysiological Properties of Magnocellular Neurons of Rat Supraoptic Nucleus

Potassium channels are trans-membrane proteins, which selectively transport K+ ions across cell membranes and play a key role in regulating the physiology of excitability cells and signal transduction pathways. Bothutous Schach (BS) scorpion venom consists of several polypeptides that could modulate ion channels. In this study, the effects of BS crude venom on passive and active electrophysiolo...

متن کامل

Restricted loss of olivocochlear but not vestibular efferent neurons in the senescent gerbil (Meriones unguiculatus)

Degeneration of hearing and vertigo are symptoms of age-related auditory and vestibular disorders reflecting multifactorial changes in the peripheral and central nervous system whose interplay remains largely unknown. Originating bilaterally in the brain stem, vestibular and auditory efferent cholinergic projections exert feedback control on the peripheral sensory organs, and modulate sensory p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 77 5  شماره 

صفحات  -

تاریخ انتشار 1997